

Virtual Design Review 1

Flight Simulator Egress System

Marco Karay Daniel Swope Andrew Filiault

Introduction

Team Leader Frank Cullen **Design Engineer** Andrew Filiault **Research Engineer** Andrew Porter

Financial Advisor Daniel Swope Historian Marco Karay

Project Background

- Sponsor: Lockheed Martin
- The purpose of this project is to support pilot training through the design of a system to improve the way pilots get in and out of F-16 cockpit simulators.

Figure 1: A Lockheed Martin F-16 in flight. (Lockheed Martin, n.d)

Project Summary

- Design a modular system that allows training seat to move in and out of cockpit dome
- Research best method of movement and operation
- Perform FEA analysis on structural components and initial prototyping

Figure 2: Existing cockpit dome design.

Background Research

Investigate best method of motion

- Investigate best method of operation
- Must conform to military standards
 - Mil Spec 1472 (Human Engineering)

Arm Strength in Newtons (pounds of force)												
(1)	(2)		(3)		(4)		(5)		(6)		(7)	
Degree of	Pull		Push		Up		Down		Out		In	
shoulder flexion/extension	L	R	L	R	L	R	L	R	L	R	L	R
90 deg (flexion)	222 (50)	231 (52)	187 (42)	222 (50)	40 (9.0)	62 (14)	58 (13)	76 (17)	36 (8.0)	62 (14)	58 (13)	89 (20)

Figure 3: MIL Spec 1472 standard arm strength values for degrees of flexion. (U.S. DoD, 2012)

Project Scope

- Increase ease of use of F-16 flight simulator
- Decrease risk of damage to cockpit
- Create a system that will be easily implemented into current flight simulators

Figure 4: Example of a dome style cockpit simulator. (DePietro, 2011)

Customer Needs

- Design a track system that can mount to the gurney
- Seat must move fully in and out of simulator dome
- Allow for ingress and egress of 95th percentile male

Customer Needs (cont'd)

Gurney

- Egress system will be mounted on gurney
- Locks into the cockpit simulator

Cockpit Seat Area System must lock seat position here Figure 5: Existing cockpit base and gurney system.

Functional Decomposition

Functional Decomposition (cont'd)

- Move seat inside and outside of cockpit dome
- Allow variety of cockpit occupants
- Attach to existing cockpit components
- Operate in emergency situations
 - Fire
 - Loss of power

Figure 6: Current cockpit seat system.

Gantt Chart

	Major Tasks	Project Completed By: May 01, 2018										
1	Get design requirements from sponsor											
2	Define working paramenters											
3	Evaluate current egress system											
4	Research existing systems											
5	Determine mode of motion for cockpit seat											
6	Research user control mechanisms											
7	Design working CAD model of prototype											
8	Send CAD model to Lockheed											
9	Revise CAD model											
10	0 Cost analysis for bought parts vs. self made											
11	Order parts and hardware											
12	Analyze clearances between proposed design and existing base											
13	Perform preliminary stress analysis for material thickness											
14	Design initial prototype											
15	Proof of concept to Lockheed											
16	Perform final stress analysis											
17	Revise and finalize design											
18	Produce functional design											
19	Validate design for integration											
		1st	5th	1st	5th	1st	5th	ũt	1st	5th	1st	5th
		Sct	ب ب	8	بً ۲	ec	ς τ	- - -	ep	р 1	ar	r 1
			ŏ	Ż	Ŷ	Ď	De	Jai	ц	Fel	Σ	Ма

Moving Forward

Target Catalogue
Target Summary
Concept Generation
Concept Selection
Simulator base mockup

Figure 7: Cockpit simulator base.

Acknowledgments

- Thank you to Lockheed Martin for their sponsorship
- Thank you to Jeff Payne, Robert Kenney, and Ken Clonts of Lockheed Martin for their guidance and direction
- Thank you to Dr. Hollis for his expertise on our project

LOCKHEED MARTIN

References

Dan DePietro. (2011, June 15). [Photograph] Retrieved from http://www.f-16.net/g3/f-16-photos/album03/album72/F-16MTC

Lockheed Martin. (n.d). *F-16 Block 70.* [Photograph] Retrieved from http://www.lockheedmartin.com/us/products/f16/F-16- Block-70.html

U.S. Department of Defense. (2012, January 11). *Design Criteria Standard: Human Engineering*. [Table] Retrieved from <u>http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-</u>STD-1472G_39997/

